

மாகாணக் கல்வித் திணைக்களம் வடக்கு மாகாணம்

Provincial Department of Education, Northern Province Signal Province P					
மாதாந்த மதிப்பீடு					
Grade - 13	C	Chemistry		July –	2022
		Part 1			
Select the most suit	able answer.				
			onic equilibriu (3) CH ₃ COO		
	mol dm ⁻³ NaOH soluer. what would be the				olution were (5) 5
given solution a. c. (1) c < d < b < (4) a < b < c <	0.01 mol dm ⁻³ HCl 0.01 mol dm ⁻³ NaC (a (2) d (5)	$\begin{array}{ccc} & b. & 0. \\ 0H & d & 0. \\ 0 & d < a < c < b \\ 0 & d < c < a < b \end{array}$	01 mol dm³ . 01 mol dm³ ((3) b	H ₂ SO ₄ CH ₃ COOH < a < d < c	
of A_2B_3 (s) in (1)1 x 10 ⁻³ m	100 dm^{-3} (2) 1		(3	3) 2x 10 ⁻⁴ m	_
Ka values of H	COOH solution and; COOH and H ₃ COOH	were 1.8 x 10 ⁻⁴ n [<i>HC00</i> ⁻ (a	nol dm ⁻³ and	1.8 x 10 ⁻⁵ 1	
respectively. A	t equilibrium the valu	e of	is equa	l to,	
(1) 1	(2) 1.5 (3) 1	10 (4) 1.05	(5)	20	
products are K S_2 . When each following is co Ksp_1/Ks (1) Ksp_1/Ks (4)	$sp_2 = S_2 \tag{2}$ $sp_2 = S_1^2 \tag{5}$	ively. Solubility of with its saturated $\frac{Ksp_1}{Ksp_2} = \frac{Ksp_1}{Ksp_1} = 2Ks$	of A_2X is S_1 solution, if S_1	and the solul $S_2 = 2S_1$, v $Ksp_2 = 3$	bility of AY is which of the Ksp ₁
value?	the following chloride				
(1) AlCl ₃	(2) HCl	(3) PCl ₃	(4	4) MgCl ₂	(5) NH ₄ Cl

8.	The pH value of	the solutionobtained	by mixing 100	cm^3 of 0.1 mol H_2	SO ₄ and 100 cm ³ of
	0.4 mol KOH at	25 °C is,			
	(1) 10	(2) 11	(3) 12	(4) 12.5	(5) 13
9.		ining 0.55 mol dm ⁻³ ol dm ⁻³ NaOH was ad			*
	(1) 9.0	(2) 9.5	(3) 10.0	(4) 10.5	(5) 11.0

10. When 1 mol of Ethanoic acid is diluted at constant temperature to a volume V. Which one of the following graphs represents the variation of degree of dissociation (α) of the acid with V?

11. Which one of the following indicator is most suitable for the titration between aqueous $Ba(OH)_2$ and propanoic acid?

- (1) Methyl orange
- (2) Methyl Red
- (3) Litmus papaer

- (4) Bromothymol Blue
- (5) Phenolphthalein

12. The concentration of aqueous solution of NaOH is 1×10^{-4} mol dm⁻³. The pH value of this solution at 25 °C is,

- (1) 4
- (2) 10
- (3) 5
- (4) 13
- (5) 11

13. A 1 mol dm⁻³ aqueous solution of a mono basic weak acid is is 25 % dissociated. The ka value of this acid is,

- (1) 6.25 x 10⁻² mol dm⁻³
- (2) 6.25 x 10⁻²mol² dm⁻⁶
- (3) 8.33 x 10⁻² mol dm⁻³

- (4) 8.33 x 10⁻⁴ mol dm⁻³
- (5) 62.5 x 10⁻² mol dm⁻³

14. The relationship among K_b of $NH_3(aq)$, K_a of; $NH_4^+(aq)$ and K_w at the same temperature is, $\frac{K_a}{K_b} = K_w$ (2) $\frac{K_b}{K_a} = K_w$ (3) $\frac{K_a - K_b}{K_b} = K_w$ (4) $\frac{K_a \times K_b}{K_b} = K_w$

(5) None of the above

15. The solubility product of $M(OH)_2$ at room temperature is 5×10^{-10} mol³ dm⁻³.. The OH - ion concentration in mol dm⁻³ of a saturated aqueous solution of $M(OH)_2$ at room temperature is,

- (1) 5 x 10^{-4}
- $(2) 1 \times 10^{-3}$
- $(3) 2.5 \times 10^{-5}$
- (4) 125 x 10⁻³⁰
- $(5) 5 \times 10^{-3}$

Instructions for questions 16 to 20

(1)	(2)	(3)	(4)	(4)
Only (a), (b)	Only (b), (c)	Only (c), (d)	Only (a), (d)	Any other
are correct	are correct	are correct	are correct	response/responses
				is/are correct

- 16. Which of the following statements is / are true?
 - a) Acids and bases are electrolytic solutions
 - b) Concentration of H₂O is 55.5 mol dm⁻³.
 - c) Ionic product of water is 1 x 10⁻⁷ mol ²dm⁻⁶ at 25 ^OC
 - d) unit of pH is mol dm⁻³
- 17. In 298 K a solution is prepared by mixing 100 cm^3 of 1 mol dm^{-3} HCl into 200 cm^3 of $1 \text{ x } 10^{-4} \text{ mol dm}^{-3}$ CH₃COONa . Which of the following statements is / are true? (Ka = $1.8 \text{ x } 10^{-5} \text{ mol dm}^{-3}$)
 - a) pH of the resultant solution is 7.
 - b) In the resultant solution; H⁺ ion concentration is 0.5 mol dm⁻³
 - c) Resultant solution is a buffer solution.
 - d) pH of the resultant solution is less than 7.
- 18. Which of the following statements is / are true?
 - a) pH of 1 x 10 $^{-8}$ mol dm $^{-3}$ HCl is 8 at 25 $^{\circ}$ C
 - b) Conjucate base of $H_2PO_3^-$ is HPO_3^{2-}
 - c) With increase of temperature, ionic product of water decreases.
 - d) Ionization of water is an endothermic reaction.
- 19. Consider the solution of; 0.04 mol dm⁻³ KOH at 25 °C. Which of the following statements is / are true?
 - a) OH ion concentration is 0.04 mol dm⁻³.
 - b) pH = 12.6
 - c) pOH = 2.4
 - d) Concentration of KOH (aq) is greater than OH ion concentration
- 20. Solution X has been prepared by mixing 50 cm³ of 0.1 mol dm⁻³ CH₃COOH (aq) and 50 cm³ of 0.1 mol dm⁻³ CH₃COONa (aq). Which of the following statements is / are true about tthis solution X?
 - a) It has a CH₃COO concentration of 0.1 mol dm⁻³.
 - b) It has a H₃O⁺ concentration of 0.1 mol dm⁻³.
 - c) It's pH is less than 7
 - d) It has buffer property

Instructions for questions 21 to 25

Response	First statement	Second statement
(1)	True	True, and correctly explain in the
		first statement
(2)	True	True, but not explain in the first
		statement correctly
(3)	True	False
(4)	False	True
(5)	False	False

L		First statement	Second statement
Ī	21.	When the pH of an aqueous	When the H ⁺ concentration of a
		solution changes, the pOH also	solution changes, the OH-also changes
		changes by the same number of	by the same amount at same
		units at same temperature.	temperature.

22.	NH ₃ solution is classified as a	NH ₃ accepts a proton from water
	Bronsted base.	forming forming NH ₄ ⁺ solution and OH
		ion solution.
23.	_	The conjucate bases should have one
	SO_4^{2-} is a conjucate base of H ₂ SO ₄	proton less in each acids.
24.	At 25 °C pH of an aqueous	Cl ion of NH ₄ Cl undergoes hydrolysis
27.	1 1	
	solution of NH_4Cl is less than 7.	to give HCl solution.
25.	When H ₂ S is passed in acidic	Solubility product of MnS is less than
	medium, Mn^{2+} is precipitated as	that of Group II sulfides in qualitative
	MnS.	analysis

Part 2 - A (Structured Essay questions)

2.Me	ntion whether, the following salts in an aqueous solution are acidic, basic, or neutr
i.	C ₆ H ₅ COONa
ii.	Ba Cl ₂
iii.	Al Cl ₃
iv.	FeCl ₃
	e pH of a rain water sample collected from Kandy was 4.62. Calculate the H_3O^+ accentration of the sample?
	r

variation of pH with the volume of HCl amine is 5 x 10 -5 mol dm ⁻³	added into the CH ₃ NH ₂ solution. Kb of Methyl
in by	(1) Write the equilibrium reaction exist in an aqueous solution of CH3NH2 .
	(2) Write the expression for Kb of CH₃NH₂?
Volume of HCl added (cm ³)	
(3) Calculate the initial concentration of CH ₃	»NH»?
(5) Calculate the initial concentration of chis	
(4) Calculate the initial concentration of HCl	solution?
(5) Calculate the pH values corresponding the	nree points in of A , B and C .
	at the state of
(6) Name an indicator that could be used for	this titration.

(b) Methylamine (CH_3NH_2) is a weak base. At 25 ^{0}C 25.00 cm³ of a given CH_3NH_2 was titrated against HCl solution of particular concentration. The following graph shows the

Part 2-B (Essay Question)

- (1) (a) (i) Derive the relationship between K_b of NH_3 and K_a of NH_4^+ in aqueous solution?
 - ii) At 25 °C the concentration of an aqueous solution of a mono- basic weak acid is 0.1mol dm⁻³. Calculate the OH⁻ ion concentration in this aqueous solution?

At 25°C Ka -
$$9 \times 10^{-9} \text{ mol dm}^{-3}$$
 & Kw - $1 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$.

iii) Show that pH of C mol dm⁻³ solution of CH₃COOH(aq) can be given by ,

$$pH = \frac{1}{2}pKa - \frac{1}{2}\log C$$

Here, Ka is the dissociation constant of weak acid CH₃COOH

- iv) Find the pH of the solution, where the concentration of CH_3COOH is 0.1 mol dm⁻³ . Ka value of CH_3COOH is 2 x 10 ⁻⁵ mol dm⁻³
- v) Calculate the pH of a solution formed through the reaction of 0.1 mol dm $^{-3}$, 40 cm 3 of CH $_{3}$ COOH (aq) with 10 cm 3 of 0.1 mol dm $^{-3}$ KOH(aq) at 25 $^{\circ}$ C. Ka of CH $_{3}$ COOH is 2 x 10 $^{-5}$ mol dm $^{-3}$
- (b) (i) What is the pH of 0.05 mol dm⁻³ solution of a weak base B at 25 $^{\circ}$ C? Kb of B is 5 x 10 $^{-3}$ mol dm⁻³; Kw 1 x 10 $^{-14}$ mol² dm⁻⁶
 - (ii) What is the pH of the solution containing the weak base mentioned above and its conjugate acid BH⁺ with equal concentration?
 - (iii) The above solution was diluted upto $100~\rm cm^3$ with distilled water. Calculate the pH of this solution at $25~\rm ^{\circ}C$
- (C) The solubility product of AgCl(s) at 25 °C is 1 x 10 ⁻¹⁰ mol ²dm⁻⁶.
 - (i) Calculate the solubility of AgCl(s) in water?
 - (ii) Caculate the solubility of AgCl(s) in a solution of 0.01 mol dm⁻³ NaCl (aq)?